Journal Club Topic of Discussion: In Situ Function

Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems

Abstract

While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0285-3

Tracking microbial interactions with NanoSIMS

Abstract

The combination of stable isotope probing (SIP), NanoSIMS imaging and microbe identification via fluorescence in situ hybridization (FISH) is often used to link identity to function at the cellular level in microbial communities. Many opportunities remain for nanoSIP to identify metabolic interactions and nutrient fluxes within syntrophic associations and obligate symbioses where exchanges can be extremely rapid. However, additional data, such as genomic potential, gene expression or other imaging modalities are often critical to deciphering the mechanisms underlying specific interactions, and researchers must keep sample preparation artefacts in mind. Here we focus on recent applications of nanoSIP, particularly where used to track exchanges of isotopically labelled molecules between organisms. We highlight metabolic interactions within syntrophic consortia, carbon/nitrogen fluxes between phototrophs and their heterotrophic partners, and symbiont–host nutrient sharing.

https://www.sciencedirect.com/science/article/pii/S0958166916301574?via%3Dihub