Journal Club Topic of Discussion: Manipulating Microbiomes

Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation

Abstract

Although the early coral reef-bleaching warning system (NOAA/USA) is established, there is no feasible treatment that can minimize temperature bleaching and/or disease impacts on corals in the field. Here, we present the first attempts to extrapolate the widespread and well-established use of bacterial consortia to protect or improve health in other organisms (e.g., humans and plants) to corals. Manipulation of the coral-associated microbiome was facilitated through addition of a consortium of native (isolated from Pocillopora damicornis and surrounding seawater) putatively beneficial microorganisms for corals (pBMCs), including five Pseudoalteromonas sp., a Halomonas taeanensis and a Cobetia marina-related species strains. The results from a controlled aquarium experiment in two temperature regimes (26 °C and 30 °C) and four treatments (pBMC; pBMC with pathogen challenge – Vibrio coralliilyticus, VC; pathogen challenge, VC; and control) revealed the ability of the pBMC consortium to partially mitigate coral bleaching. Significantly reduced coral-bleaching metrics were observed in pBMC-inoculated corals, in contrast to controls without pBMC addition, especially challenged corals, which displayed strong bleaching signs as indicated by significantly lower photopigment contents and Fv/Fm ratios. The structure of the coral microbiome community also differed between treatments and specific bioindicators were correlated with corals inoculated with pBMC (e.g., Cobetia sp.) or VC (e.g., Ruegeria sp.). Our results indicate that the microbiome in corals can be manipulated to lessen the effect of bleaching, thus helping to alleviate pathogen and temperature stresses, with the addition of BMCs representing a promising novel approach for minimizing coral mortality in the face of increasing environmental impacts.

https://www.nature.com/articles/s41396-018-0323-6

Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice

Abstract

The gut microbiome is emerging as a key regulator of several metabolic, immune and neuroendocrine pathways1,2. Gut microbiome deregulation has been implicated in major conditions such as obesity, type 2 diabetes, cardiovascular disease, non-alcoholic fatty acid liver disease and cancer3,4,5,6, but its precise role in aging remains to be elucidated. Here, we find that two different mouse models of progeria are characterized by intestinal dysbiosis with alterations that include an increase in the abundance of Proteobacteria and Cyanobacteria, and a decrease in the abundance of Verrucomicrobia. Consistent with these findings, we found that human progeria patients also display intestinal dysbiosis and that long-lived humans (that is, centenarians) exhibit a substantial increase in Verrucomicrobia and a reduction in Proteobacteria. Fecal microbiota transplantation from wild-type mice enhanced healthspan and lifespan in both progeroid mouse models, and transplantation with the verrucomicrobia Akkermansia muciniphila was sufficient to exert beneficial effects. Moreover, metabolomic analysis of ileal content points to the restoration of secondary bile acids as a possible mechanism for the beneficial effects of reestablishing a healthy microbiome. Our results demonstrate that correction of the accelerated aging-associated intestinal dysbiosis is beneficial, suggesting the existence of a link between aging and the gut microbiota that provides a rationale for microbiome-based interventions against age-related diseases.

https://www.nature.com/articles/s41591-019-0504-5